225 research outputs found

    Automatic groups and amalgams

    Get PDF
    AbstractThe objectives of this paper are twofold. The first is to provide a self-contained introduction to the theory of automatic and asynchronously automatic groups, which were invented a few years ago by J.W. Cannon, D.B.A. Epstein, D.F. Holt, M.S. Paterson and W.P. Thurston. The second objective is to prove a number of new results about the construction of new automatic and asynchronously automatic groups from old ones by means of amalgamated products

    Finitely presented wreath products and double coset decompositions

    Get PDF
    We characterize which permutational wreath products W^(X)\rtimes G are finitely presented. This occurs if and only if G and W are finitely presented, G acts on X with finitely generated stabilizers, and with finitely many orbits on the cartesian square X^2. On the one hand, this extends a result of G. Baumslag about standard wreath products; on the other hand, this provides nontrivial examples of finitely presented groups. For instance, we obtain two quasi-isometric finitely presented groups, one of which is torsion-free and the other has an infinite torsion subgroup. Motivated by the characterization above, we discuss the following question: which finitely generated groups can have a finitely generated subgroup with finitely many double cosets? The discussion involves properties related to the structure of maximal subgroups, and to the profinite topology.Comment: 21 pages; no figure. To appear in Geom. Dedicat

    Automatic structures, rational growth and geometrically finite hyperbolic groups

    Full text link
    We show that the set SA(G)SA(G) of equivalence classes of synchronously automatic structures on a geometrically finite hyperbolic group GG is dense in the product of the sets SA(P)SA(P) over all maximal parabolic subgroups PP. The set BSA(G)BSA(G) of equivalence classes of biautomatic structures on GG is isomorphic to the product of the sets BSA(P)BSA(P) over the cusps (conjugacy classes of maximal parabolic subgroups) of GG. Each maximal parabolic PP is a virtually abelian group, so SA(P)SA(P) and BSA(P)BSA(P) were computed in ``Equivalent automatic structures and their boundaries'' by M.Shapiro and W.Neumann, Intern. J. of Alg. Comp. 2 (1992) We show that any geometrically finite hyperbolic group has a generating set for which the full language of geodesics for GG is regular. Moreover, the growth function of GG with respect to this generating set is rational. We also determine which automatic structures on such a group are equivalent to geodesic ones. Not all are, though all biautomatic structures are.Comment: Plain Tex, 26 pages, no figure

    Discriminating Groups

    Get PDF
    A group G is termed discriminating if every group separated by G is discriminated by G. In this paper we answer several questions concerning discrimination which arose from [2]. We prove that a finitely generated equationally Noetherian group G is discriminating if and only if the quasivariety generated by G is the minimal universal class containing G. Among other results, we show that the non-abelian free nilpotent groups are non-discriminating. Finally we list some open problems concerning discriminating groups

    Algebraic Geometry over Free Metabelian Lie Algebra I: U-Algebras and Universal Classes

    Full text link
    This paper is the first in a series of three, the aim of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra FF. In the current paper we introduce the notion of a metabelian Lie UU-algebra and establish connections between metabelian Lie UU-algebras and special matrix Lie algebras. We define the Δ\Delta -localisation of a metabelian Lie UU-algebra AA and the direct module extension of the Fitting's radical of AA and show that these algebras lie in the universal closure of AA.Comment: 34 page

    Splittings of generalized Baumslag-Solitar groups

    Full text link
    We study the structure of generalized Baumslag-Solitar groups from the point of view of their (usually non-unique) splittings as fundamental groups of graphs of infinite cyclic groups. We find and characterize certain decompositions of smallest complexity (`fully reduced' decompositions) and give a simplified proof of the existence of deformations. We also prove a finiteness theorem and solve the isomorphism problem for generalized Baumslag-Solitar groups with no non-trivial integral moduli.Comment: 20 pages; hyperlinked latex. Version 2: minor change

    Dimension of the Torelli group for Out(F_n)

    Full text link
    Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated (n at least 3). In particular, this recovers the result of Krstic-McCool that T_3 is not finitely presented. We also give a new proof of the fact, due to Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure

    Conjugacy in Baumslag's group, generic case complexity, and division in power circuits

    Full text link
    The conjugacy problem belongs to algorithmic group theory. It is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zxz^{-1} = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the complexity of the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS(1,2) and the Baumslag(-Gersten) group G(1,2). The conjugacy problem in BS(1,2) is TC^0-complete. To the best of our knowledge BS(1,2) is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G(1,2) is an HNN-extension of BS(1,2). We show that the conjugacy problem is decidable (which has been known before); but our results go far beyond decidability. In particular, we are able to show that conjugacy in G(1,2) can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G(1,2) can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G(1,2) by reducing the division problem in power circuits to the conjugacy problem in G(1,2). The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.Comment: Section 5 added: We show that an HNN extension G = < H, b | bab^-1 = {\phi}(a), a \in A > has a non-amenable Schreier graph with respect to the base group H if and only if A \neq H \neq

    L^2-Betti numbers of one-relator groups

    Full text link
    We determine the L^2-Betti numbers of all one-relator groups and all surface-plus-one-relation groups (surface-plus-one-relation groups were introduced by Hempel who called them one-relator surface groups). In particular we show that for all such groups G, the L^2-Betti numbers b_n^{(2)}(G) are 0 for all n>1. We also obtain some information about the L^2-cohomology of left-orderable groups, and deduce the non-L^2 result that, in any left-orderable group of homological dimension one, all two-generator subgroups are free.Comment: 18 pages, version 3, minor changes. To appear in Math. An
    • …
    corecore